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Abstract
In this work, we numerically study the dynamical evolution and heat transport
properties of a system that consists of two time-reversible thermostats
connected either by a one-dimensional Fermi–Pasta–Ulam or a Frenkel–
Kontorova oscillator lattice, which are representative models of momentum-
conserving and nonconserving systems, respectively. The thermostats
were described by a chain of variables, Nosé–Hoover chains, which enhances
the ergodicity of the thermostats in comparison to the Nosé–Hoover method.
The time evolution of both lattices is not significantly altered by the dynamics
of the thermostats. The temperature profile and heat flux of the Fermi–Pasta–
Ulam model are more sensitive to the dynamics of the extended variables
than those corresponding to the Frenkel–Kontorova model. Nevertheless we
reproduce the scaling properties of the thermal conductivity with system size
obtained by other authors.

PACS numbers: 44.10.+i, 05.45.−a, 05.60.−k, 05.70.Ln

1. Introduction

Heat conduction in low-dimensional systems has been attracting increasing attention since
the last decade (see review [1] and references therein). Notwithstanding the results so
far achieved, it is still an open question under what dynamical conditions will the heat
conduction obey the Fourier law. Since it was proposed that exponential instability might
be the necessary condition [2], Lepri et al [3] studied the thermal conductivity of the
one-dimensional Fermi–Pasta–Ulam (FPU) model of anharmonic oscillators by coupling
each side of the lattice to deterministic Nosé–Hoover thermostats [4, 5] at high and
low temperatures. They found a power-law divergence of the thermal conductivity with
system size, which implies that the Fourier heat law is not justified in the FPU model,
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where the momentum is a conserved quantity. Further studies have clarified that the size-
dependence of the thermal conductivity is different between momentum-conserving and
nonconserving systems, since it converges, in the limit of large system size, for the Frenkel–
Kontorova (FK) model, where momentum is not conserved due to the existence of a on-site
potential [6].

We emphasize that the study of low-dimensional models can be important to understand
the behaviour of more sophisticated systems. For example, it has recently been shown
that the thermal conductivity of a single walled carbon nanotube with a small diameter
did not converge to a finite value with an increasing tube length, but obeyed a power-law
relation strikingly similar to that previously obtained for the FPU model [7]. On the other
hand, the FK model has been widely used to model crystal dislocation, charged density
waves, absorbed epitaxial monolayers, etc in condensed matter physics (see [8] an references
therein).

It has been pointed out that the Nosé–Hoover thermostats employed as heat reservoirs in
the aforementioned studies of one-dimensional systems are not sufficiently chaotic (ergodic)
to yield the canonical distribution from a single initial condition [9]. This observation has
been invoked to argue the necessity to employ different thermostating schemes, such as
homogeneous non-equilibrium molecular dynamics methods [10] or the Langevin model of
heat reservoirs [11]. However, since the previously mentioned results for the FPU model are
also obtained when stochastic heat reservoirs are employed [12], it seems that the thermal
behaviour of the FPU and other one-dimensional models seems to be independent of the non-
ergodicity of the Nosé–Hoover thermostats [1]. So it remains a problem to determine under
which conditions is the macroscopic behaviour of a given thermostated system independent
of the thermostat details. To address this problem we have to make a systematic study of the
influence of the dynamical properties of the thermal reservoirs on the energy distribution in
the lattice models herein studied. This entails the use of different deterministic thermostat
models to asses which of their characteristics are relevant to the thermal properties of the
studied lattice.

Among the large variety of generalizations of the original Nosé–Hoover thermostat (see
review [13] and references therein) we have chosen a scheme, known as the Nosé–Hoover
chain (NHC) method, that has become rather popular [14]. The method, originally proposed
by Martyna et al [15] introduces a chain of Nosé–Hoover-type thermostats that successively
thermostat each other, thus leading to trajectories that are sufficiently ergodic to ensure that all
momenta have a Gaussian distribution. Although there has been a discussion about the proper
statistical foundation for this method [16, 17], it is worth stressing that the NHC equations can
be recast in a form [18] in which they are amenable to be treated by an alternative formulation
[19] to the original (and very controversial) one [20]. It is also interesting to observe that,
although the NHC method has been employed to study heat conduction in lattices with a
Morse on-site potential [21], there has been no systematic comparison of the results of this
new method with those provided by the conventional NH method.

In this paper we propose to make an assessment of the results of the NH and NHC
methods applied to the problem of heat conduction in one-dimensional lattices to investigate
why the non-ergodicity of the Nosé–Hoover thermostats apparently has no influence on the
physical results so far reported in the literature. Furthermore, since the thermal conductivity
is different in momentum conserving and non-conserving systems, as already remarked, we
will take the FPU model and FK models as representative examples of the former and the
latter type of systems. As we shall see, the type of potential that defines each particular
model determines the influence of the thermostat dynamics on the thermal properties of the
lattice.
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2. The models

The Hamiltonian of the FPU model of N coupled nonlinear oscillators with nearest-neighbour
interactions can be written, in terms of dimensionless variables, as

H =
N∑

i=0

[
p2

i

2mi

+
1

2
(xi+1 − xi)

2 +
1

4
β(xi+1 − xi)

4

]
, (1)

where {xi} are the relative positions and {pi} the momenta. A value of β = 0.1 was employed
in the computation of all the numerical results hereafter reported.

The FPU model presented above is a representative lattice without on-site potential and
with momentum conservation. The FK model, on the other hand, is a representative of a general
one-dimensional lattice with an on-site potential and without momentum conservation. The
Hamiltonian of the standard FK model is

H =
N∑

i=0

[
p2

i

2mi

+
1

2
(xi+1 − xi)

2 − K

(2π)2
cos(2π [xi + iµ])

]
, (2)

where K is the strength of the external potential and µ is the winding number, which can be
written in terms of the equilibrium distance a of the oscillators and the period b of the external
potential before scaling as µ ≡ a/b [6]. In this work, we employed µ = 1/3 and K = 5. For
both models a mass of mi = 1 is taken for all oscillators and fixed boundary conditions are
assumed (x0 = xN+1 = 0).

The previously defined Hamiltonians can be written in the general form

H =
N∑

i=0

[
p2

i

2mi

+ V (xi+1 − xi) + U(xi)

]
. (3)

Here V (xi+1 − xi) stands for the interaction potential of the nearest-neighbour oscillators and
U(xi) is the periodic on-site potential. It is clear that if U(xi) vanishes and V (xi+1 − xi) takes
the quadratic (harmonic) plus quartic form, equation (3) becomes the FPU model, and if the
former potential takes the periodic form whereas the latter takes the harmonic form then the
FK model (2) is obtained. By changing the form of V (xi+1 −xi) and U(xi) we obtain different
thermal conductive behaviours.

3. Thermostat implementation

3.1. Nosé–Hoover method

The equations of motion for the standard NH method can be written as

ẋi = pi

mi

ṗi = fi − fi+1 − pηi

Qi

pi(δi,1 + δi,N )

η̇i = pηi

Qi

(δi,1 + δi,N )

ṗηi
=

{
p2

i

mi

− (T+δi,1 + T−δi,N )

}
(δi,1 + δi,N ),

(4)

where fi ≡ −V ′(xi+1 − xi) − U ′(xi) is the force on each oscillator due to the potential, either
of the FPU or FK type, and δ is the Kronecker symbol. Note that the boundary oscillators
(i = 1, N) interact with two heat reservoirs operating at temperatures T+ and T−, respectively
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(without loss of generality we assume that T+ > T−), in order to induce a heat flux through
the lattice. The action of these thermostats is microscopically modelled by the set of extended
variables

{
η1 , pη1

, η
N
, pη

N

}
. The parameter Qi , which can be considered as the ‘mass’ of

each thermostat, determines the time scale on which the thermostats evolve and takes the form

Qi = (T+δi,1 + T−δi,N )�2,

being � the thermostat response time [9]. The above prescriptions imply that the kinetic energy
of the boundary oscillators fluctuates around the imposed average value, thus simulating a
‘canonical’ dynamics. The variables η1 and η

N
in (4) are decoupled from the dynamics

and are strictly not necessary, but are given explicitly in order to compare with the NHC
method. Indeed, if we define the thermodynamic friction coefficients as ζi ≡ η̇i , we can recast
equations (4) in the usual form encountered in this type of studies [1, 9].

The Nosé–Hoover thermostats were proposed as an extension of molecular dynamics
methods to physical situations in which the total energy of the system is not constant, such as
those corresponding to the NVT and NPT statistical ensembles [4, 5]. However, despite their
widespread use, for small systems, such as an harmonic oscillator with a dynamics constrained
by the condition of constant temperature, it has been shown that the resulting phase-space
trajectories are incapable of reproducing the correct phase-space probability density function
[5]. Since a single oscillator at each lattice end is thermostated by means of the NH method,
as already explained, it is expected that the aforementioned lack of ergodicity of the boundary
oscillators will somehow influence the thermal behaviour of the lattice. Then it would also
be reasonable to believe that the results for heat conduction obtained by employing the NH
thermostats would be somewhat modified if a different thermostating scheme is adopted.

3.2. Nosé–Hoover chain method

In [15] it was proposed to modify the NH method by including a series of thermostats coupled
in such a way that the fluctuations of the first one are controlled by a second thermostat,
its fluctuations being controlled by a third one, and so on, to form a chain of M thermostats. This
set is named Nosé–Hoover chain. It has been explicitly demonstrated that, by employing this
methodology, it is indeed possible to reproduce the phase-space probability density functions
corresponding to various statistical ensembles [22].

The implementation of the NHC methodology to the heat conduction problem is
straightforward, and the complete set of equations for the NHC method can be written as

ẋi = pi

mi

ṗi = fi − fi+1 − pηi,1

Qηi,1

pi(δi,1 + δi,N )

η̇i,α = pηi,α

Qηi,α

(δi,1 + δi,N )

ṗηi,1 =
{[

p2
i

mi

− (T+δi,1 + T−δi,N )

]
− pηi,1

pηi,2

Qηi,2

}
(δi,1 + δi,N )

ṗηi,α
=

{[
p2

ηi,α−1

Qηi,α−1

− (T+δi,1 + T−δi,N )

]
− pηi,α

pηi,α+1

Qηi,α+1

}
(δi,1 + δi,N )

ṗηi,M
=

{
p2

ηi,M−1

Qηi,M−1

− (T+δi,1 + T−δi,N )

}
(δi,1 + δi,N ),

(5)

where a chain of M thermostats has been coupled to each boundary oscillator, as already
explained. We take Qηi,α

≡ Qi ∀α, which means that each αth element of the NH chain
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of each boundary oscillator (i = 1, N) has the same value of the parameter Qi originally
employed in the NH method. This choice is not a limitation since small variations of particular
values of the thermostat mass are not critical [5] (see the next section for further details on
this particular issue). A point Γ(t) in the extended phase space is thus defined by

Γ(t) = {
x1 , . . . , xN

, p1 , . . . , pN
; {η1,α

}Mα=1, {pη1,α
}Mα=1, {ηN,α

}Mα=1, {pηN,α
}Mα=1

}
.

Since each boundary oscillator is coupled to M extended variables, the NHC method increases
the size of the phase space by the inclusion of the extended chain variables and thus helps make
the system ergodic. Thus it can be expected that the dynamics of each boundary oscillator
will be sufficiently chaotic to yield the canonical distribution consistent with the imposed
temperature. In the next section, we will explore if this is indeed the case.

4. Phase-space dynamics

The equations of motion for both the NH and NHC methods corresponding to the FPU and FK
models, although non-Hamiltonian in nature, are left invariant under time reversal composed
with the change pi → −pi . Thus they were numerically integrated by means of a explicit
time-reversible integrator which preserves the structure of the extended phase space [23] and
enabled us to employ a rather large integration step of 0.05 in all of our simulations. The values
of N were taken between 32 and 512 (except for the computation of the thermal conductivity of
the FPU model, for which we employed values up to N = 16 384). In order to compare with
previously published results [3, 6, 24] we take the value of the thermostat response time as
� = 1. As initial conditions we choose the equilibrium value of the oscillators displacements,
i.e. xi(0) = 0 ∀ i. The momenta {pi(0)} were taken randomly. Given this initial setting we
proceed first to characterize the dynamics of the system, and then to investigate the influence
of the NHC thermostats on the dynamics of the boundary oscillators and on the long-time
behaviour of the lattice.

The maximum Lyapunov exponent (LE) gives a measure of the degree of chaos present
in a dynamical system. In general, the more chaotic the dynamics of a system, the more
quickly it fills the phase space. It is therefore important to study this quantity to corroborate if
the Nosé–Hoover dynamics fills the accessible phase space for some reasonable values of the
NHC length M. The calculation of the LE is based on dynamics cast in the generic form

Γ̇(t) = G(Γ),

where Γ(t) refers to a point in the extended phase space, as explained in the previous section.
In the method used to calculate the exponents, two nearby trajectories are integrated for a small
time interval τ and the distance between them monitored. The initial separation is determined
by

Γ′(0) = Γ(0) + δΓ(0),

where δΓ(0) is a vector such that |δΓ(0)| = ε, where | · · · | denotes the Euclidean norm. After
an interval τ the norm |δΓ(τ )| is computed and saved. The vector δΓ(τ ) is then renormalized
to ε and the process is repeated Nτ times. The LE is calculated from

λmax = 1

Nτ

Nτ∑
i=1

ln

∣∣∣∣δΓi (τ )

ε

∣∣∣∣ . (6)

In figure 1 the LE of both models is plotted as a function of M for two different values of
the oscillator number N. The value M = 0 corresponds to the standard NH algorithm, whereas
M � 2 corresponds to the NHC algorithm. The values of the employed temperature gradients
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Figure 1. LE, computed from equation (6), for FPU and FK lattices as a function of the NHC
length M. Filled circles and filled squares are the results corresponding to the FPU and FK models
for N = 32, whereas open circles and open squares are the results with N = 64. The temperature
gradients applied to the FPU and FK lattices for both N values are �T = 128 and �T = 0.1
respectively. The maximum standard deviation is O(10−3) for all data points. In all cases depicted
τ = 10�t and Nτ = 600 000.

were taken in a range, specific for each model, in which the corresponding temperature profiles
are N independent (see section 5). In both instances the LE becomes increasingly large with
M, whereas for M � 10 the dependence of the LE with respect to M becomes less pronounced.
It is also observed that, for M < 10, the value of the LE depends strongly on the model. On
the other hand, for M � 10 the average value of the LE is almost the same for both studied
models. Therefore we can consider that a value of M = 10 guarantees that the trajectory
generated by the Nosé–Hoover chain dynamics is ergodic enough to be compatible with the
expected statistical behaviour of the boundary oscillators.

The dependence of the LE on N for both models is also reported in figure 1. We observe
that this dependence is more pronounced in the case of the FPU model, since the large variations
in the LE value for N = 32 are smoothened out for N = 64. The detected increase of the
LE value with N for the FPU model seems to be consistent with the logarithmic divergence,
albeit very weak, of the LE with N already reported [25]; although further research, which is
out of the scope of this paper, is needed to clarify this point. In contrast, for the FK model
the dependence λmax(N) is rather weak. Nevertheless, for M � 10 the LE of both models has
already attained an almost N independent value.

For the FPU model it has been argued that the time evolution, obtained by means of the
standard NH method, of the two thermostats at each end of the lattice is not sufficiently random,
since some periodic-like structures can be detected in the phase space corresponding to each
boundary oscillator [9]. However, in the case of the NHC method we obtain a somewhat
different result. As can be readily seen in figure 2, the phase-space trajectory approximately
fills the accessible phase space in the relatively short time interval depicted (almost four orders
of magnitude lower than the time span employed to obtain the stationary state, as will be seen
on the next section). Asymptotically no trace of any periodic-like structures, as well as of
pathological structures such as Hoover Holes [15], can be observed, whatsoever. Thus we
can conclude that, for the NHC method, the oscillators at both ends of the lattice are indeed
well-behaved thermostats from a dynamical point of view. The corresponding results for the
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Figure 2. Phase space of the thermostated oscillators at each end of the FPU lattice, with
(a) T+ = 152 and (b) T− = 24. Trajectory computed for an interval of 5.0 × 104 time steps. The
NH chain length is M = 10 and the lattice size is N = 32.

FK model (not shown) are to a large extent the same as those displayed in figure 2, with only
small differences due to the particular details of the model.

As previously mentioned, for the NH method the kinetic energy of the boundary oscillators
fluctuates around the imposed average, thus their probability distribution functions are
canonical. Now, for the NHC method it is essential to corroborate that this is indeed the
case, since in another low-dimensional deterministic and periodic system such as the Lorentz
gas it is known that slight modifications of the Nosé–Hoover thermostat lead to different
dynamical and transport properties [26, 27]. By means of the analysis of the LE we have
fixed the NHC length M, so the only free parameter left is the thermostat response time �

taken provisionally as unity, as already mentioned. It is known that � � 1 implies that
there must be instantaneous response of the reservoir to the fluctuations of the kinetic energy
of the boundary oscillators, thus imposing the constraint of constant kinetic energy which
corresponds to the microcanonical ensemble; on the other hand, in the opposite limit � � 1
the canonical distribution function is recovered [13]. However, the larger is �, the longer
must last the simulations in order to have more reliable statistics. Hence an intermediate value
in-between these two limiting cases would be the most appropriate choice.

In figure 3 we present the momentum distribution functions of the boundary oscillators
corresponding to the FPU lattice for different values of the response time �. We do not discuss
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Figure 3. Momentum distribution functions obtained with a NHC length of M = 10 for (a) the
first boundary oscillator thermostated at a temperature of T+ = 152 and (b) the last oscillator
thermostated at a temperature of T− = 24 of a FPU lattice with N = 32. The response time of the
boundary oscillators in both instances is � = 0.1 (dashed curve), � = 1 (solid curve) and � = 10
(dot-dashed curve). Note the transition from a microcanonical-like to a canonical distribution
under variation of �.

the probability densities for the associated position coordinates since the action of the thermal
reservoir primarily concerns an exchange of energy related to the momenta. For the oscillator
thermostated at the highest temperature T+ = 152, the shape of the distribution function
remains to a large extent Gaussian; only the height is affected by the � value, in agreement
with the known results for the FPU model [1]. In contrast, for the oscillator thermostated
at T− = 24 it can be observed that, between the two limiting cases (microcanonical for
� � 1 and canonical for � � 1) mentioned in the previous paragraph, there exists a
superposition of the two corresponding distributions in the form of a crater-like distribution
with a dip at the place of the maximum of the canonical distribution that is obtained for large
� values. This result was first obtained for the periodic Lorentz gas [26], a system markedly
different from those studied in the present work. By comparing the results in figures 3(a) and
(b) for both temperature values we find that � = 1 represents a reasonable compromise
between the approach of the distribution function to the canonical form and numerical
feasibility.

The corresponding results for the FK model are reported in figure 4. At variance with
the results of the FPU we observe that the shape of the distribution functions always remains
to a large extent Gaussian. No trace of the crater-like shape can be observed for all � values
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Figure 4. Momentum distribution function of (a) first boundary oscillator thermostated at T+ = 0.3
and (b) last boundary oscillator thermostated at T− = 0.2 for a FK lattice. Same N, M and �

values, with same line symbols, as in figure 3.

employed. So, our results suggest that, for this model, the main features of the distribution
functions of the boundary oscillators are almost unaltered by small variations of the thermostat
response time. We believe that this result is due to the specific form of the on-site FK potential,
although further research is needed to clarify this point. Thus, for the FK model we conclude
that the choice � = 1 is also an adequate value for the thermostat response time.

For the FPU model it is known that the existence of a nonlinear long-wavelength mode,
which assists the energy transport, leads to the violation of the Fourier heat law in this one-
dimensional system [9]. It is also known that the phonon–lattice interaction leads to a normal
energy transport in the case of the FK model [6]. Our next objective is to investigate if the
dynamics of the extended phase space has an influence in the above features of the studied
lattices.

The time evolution, after a long transient time interval of 2×108 time steps, of the relative
positions {xi} in a lattice with N = 128 oscillators and a NH chain length of M = 10 is plotted
in figure 5(a). The grey-scale changes from black to white correspond to a change from
minimum to maximum. This figure gives clear evidence of the nonlinear long-wavelength
mode, which corresponds to the longest oscillation visible during the simulation interval.
The regular energy transport along the FPU lattice leads to a long-time correlation between
oscillators in the system [9]. This can be quantified by following the time evolution of
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(a)

(b)

Figure 5. (a) Time evolution of the displacements and (b) time evolution of the normalized
autocorrelation function of a FPU lattice with N = 128 oscillators and NHC length of M = 10.

the correlation function Cij (τ ) = 〈xi(t)xj (t + τ)〉, with 〈· · ·〉 denoting time average. The
normalized autocorrelation function Cii is shown in figure 5(b), in which the quasiperiodic
correlations inside the chain are clearly visible. These correlations are produced by the
aforementioned long wave-length mode which has a period proportional to N, as can be
appreciated in that same figure. Since these last results are entirely consistent with those
found employing the NH method, we conclude that the dynamical behaviour of the lattice is
unaffected by the change in the thermostating mechanism afforded by the NH chain.

As already mentioned, the on-site potential in the FK model inhibits the long-wavelength
mode present in the FPU model. A direct corroboration is afforded by the information
presented in figure 6(a) for the time evolution of the relative positions {xi}. At variance with
the results of figure 5(a) for the FPU lattice, the long-wavelength mode is altogether absent in
the case of the FK model. Furthermore, by following the time evolution of Cii , the correlations
inside the lattice gradually die out, as can be appreciated in figure 6(b).

Our results so far establish that the NHC method is more adequate than the standard NH
method to model the thermostats which drive the system to the steady state. The influence
of the extended variables is not appreciated in the dynamical behaviour of the lattice for both
the FPU and FK models, which is mainly driven by the specific features of the respective
potentials, as already known form previous studies. In the next section, we will investigate
the influence, if any, of the extended variables in the energy transport properties for both
models.
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(a)

(b)

Figure 6. (a) Time evolution of the displacements and (b) time evolution of the normalized
autocorrelation function of a FK lattice with N = 128 oscillators and NHC length of M = 10.

5. Temperature profile and heat flux

After a long transient time interval of 2 × 108 time steps, the system reaches a statistically
stationary state, where each oscillator is in a local equilibrium at a certain kinetic temperature of
Ti = 〈pi/mi〉. The non-equilibrium macrostate is characterized by a non-uniform temperature
field along the lattice which converges to a well-defined shape. In figure 7, we present our
results for the FPU model corresponding to the NH and NHC methods for a lattice size of
N = 128. By comparing the results of both methods we can readily observe some differences.
First, the singularities at both lattice ends are somewhat increased in the case of the NHC
method. This boundary-resistance can be explained by the existence of quasi-conserved
modes associated with the boundary oscillators [28]. The rigidity of these modes is thus
enhanced by the more detailed microscopic dynamical description of the thermostats afforded
by the NHC method. It is also known that these thermal resistance effects are a signature of
the anomalous transport properties that are characteristic of this model [1]. Now, since the
oscillators in the bulk are less affected by the microscopic details of the thermostats, we can
infer that, as N increases, the thermal properties of the lattice will not be significantly altered
by the NH chains that thermostat the boundary oscillators.

For the case of the FK model, the dependence of the temperature profile shape on the NH
chain length is almost negligible, as can be seen in figure 8. Thus it is clear that the presence of
the on-site potential, which is responsible of the normal heat conduction in the FK model [6],
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Figure 7. A temperature profile of the FPU lattice. The imposed temperatures are T+ = 152 and
T− = 24, with an oscillator number of N = 128. Averages are carried over a time interval of ≈105

time steps. The displayed results are for the NH (dashed line) and NHC (solid line) methods, with
M = 10 in the latter case. The maximum standard deviation is O(10−2) for all data points.
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Figure 8. Temperature profile of the FK lattice. The imposed temperatures are T+ = 0.3 and
T− = 0.2, with an oscillator number of N = 128. Results for the NH (dashed line) and NHC
(solid line) methods, with M = 10 in the latter case. Same maximum standard deviation as in
figure 7 for all data points.

makes the FK lattice incapable of sustaining the quasi-conserved modes present in the FPU
lattice, a feature that also drastically diminishes the influence of the extended variables on the
non-equilibrium macrostate. From these results it is clear that, so far, the differences between
the NH and NHC methods can only be attributed to the type of potential and the dynamical
details in each lattice model, and not to the differences in the microscopic description of the
thermostats employed in both methods.
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Figure 9. κ(N) versus oscillator number N for the FPU lattice. Results for the NH (circles, dashed
line) and NHC (squares, solid line) methods, with M = 10 in the latter case. T+ = 152 and
T− = 24 in both cases. The lines are drawn to guide the eye. Statistical errors are displayed only
when larger than the symbols’ size.

The local heat flux j (q, t) = ∑
iJiδ(q − qi), where qi = xi + iµ, is implicitly defined by

the continuity equation [6]. Thus the heat flux is defined as

Ji = pi

mi

∂V (xi+1 − xi)

∂xi

.

Numerically, the time average J = 〈Ji(t)〉 is independent of the index i for long enough time.
We now proceed to explore the influence of the thermostat description on the thermal

conductivity of the FPU lattice. For a different particle number N, the corresponding
temperature profiles scale as Ti = T (i/N) (see figure 1 in [3]), which implies that the
temperature gradient vanishes as N−1. In figure 9, we have plotted the finite-length thermal
conductivity κ(N) = JN/�T as a function of the oscillator number N computed with the NH
and NHC methods. In both cases, it is clear that the conductivity diverges as κ ∝ Nα . However,
we note that the finite-size effects are much more pronounced in the results corresponding
to the NHC method than those of the conventional NH method. Indeed, the crossover in the
dependence of the α exponent on N, first detected in [24] at N = 250 employing the NH
method, is somewhat increased to N = 1024 for the case of the NHC method. To obtain
information on the behaviour of the α exponent in the thermodynamic limit we have to discard
data points that present a strong finite-size dependence, which can be readily identified, by
means of the NHC method, as those corresponding to N < 1000. Our result for the NH method
is α = 0.361 ± 0.003, in good agreement with the first published results [3, 24], whereas for
the NHC method we obtain α = 0.372 ± 0.003, a value consistent both with latter simulation
results, albeit obtained for a temperature gradient of �T = 16, and with the predictions of
self-consistent mode-coupling theory [29]. Both results are larger than the α = 1/3 estimate
obtained by a renormalization group calculation on the stochastic hydrodynamic equations of a
1D fluid [30]. Furthermore, we observe that, notwithstanding the large lattice sizes employed
in the computation of α, its value, obtained by means of the NHC method, is systematically
different than that computed with the conventional NH method. Further studies are needed
to corroborate if this difference persists with different simulation conditions, such as larger
system sizes and smaller temperature gradients.
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Figure 10. κ(N) versus oscillator number N for the FK lattice. Results for the NH (circles, dashed
line) and NHC (squares, solid line) methods, with M = 10 in the latter case. T+ = 0.3 and
T− = 0.2 in both cases. The lines are drawn to guide the eye.
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Figure 11. Average heat flux versus temperature gradient for (a) FPU and (b) FK lattices, both
with N = 128 oscillators. Results for the NH (circles, dashed line) and NHC (squares, solid line)
methods, with M = 10 in the latter case. The maximum standard deviations for the FPU and FK
data are O(10−3) and O(10−5), respectively. The lines are drawn to guide the eye.

In the case of the FK lattice, the scaling of the finite-length conductivity κ(N) with
oscillator number N is almost independent of the employed method, either NH or NHC, as
can be readily appreciated in figure 10. Only for a lattice length greater than 400 the thermal
conductivity presents a weak size dependence which is nevertheless statistically not significant.
The small value of the temperature gradient compared to the strength of the on-site potential
guarantees that the scaling relation Ti = T (i/N) is satisfied for the FK model (see figure 1 in
[6]), which implies that the temperature gradient vanishes as N−1, just as in the FPU model.
Since the approximately constant value of κ(N) for all N values implies that 1/J diverges
with N, the thermal conductivity is finite and the Fourier heat law is justified.

Figure 11(a) shows the mean heat flux as a function of the temperature gradient �T for
the FPU model. It is observed that, as the temperature difference increases, the averaged heat
flux increases monotonically [31]. We again find a dependence of the result on the employed
thermostat description. For the NHC method the value of the average heat flux diminishes with
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respect to the corresponding value obtained from the NH method when both are computed at
the same temperature difference.

For the FK model, the increase in the average heat flux with the temperature gradient
has a parabolic-type shape, as can be seen in figure 11(b). This result is almost the same for
both the NH and NHC methods. We again find that the on-site potential strongly diminishes
the influence of the chosen dynamical description of the heat baths on the thermal behaviour
of the lattice. We remark that our results for the FK model are rather different from those
obtained recently for the φ4 model [31]. For this model, which is described by the potentials
V (x) = 1

2x2 and U(x) = 1
2x2 + 1

4x4, the average heat flux saturates at a certain value of
the temperature gradient without any further increase. It has been argued that this peculiar
behaviour of the φ4 model is due to a combination of nonintegrability and lack of momentum
conservation [31]. Now, although the temperature gradients that we employed for the FK
model are much smaller than those employed in [31] for the φ4 model for reasons already
explained, nevertheless the behaviour of the average heat flux is markedly different from that
of the φ4 model, even though both models are nonintegrable and lack momentum conservation.
Furthermore, the saturation of the average heat flux at a certain threshold value of �Tc has
also been observed in a chain of coupled rotators (V (x) = 1 − cos(x) and U(x) = 0), which
has no on-site potential and where momentum is conserved [11, 32]. From our results and the
aforementioned comparisons we can conclude that the mechanism responsible of the saturation
of the average heat flux beyond certain threshold temperature gradient value for the φ4 model
so far remains unexplained.

6. Conclusions

In this paper, we have applied the Nosé–Hoover chain method of extended variables to describe
the microscopic dynamics of the time-reversible thermostats coupled to FPU and FK lattices.
With this method the ergodicity of each thermostat is increased and the phase-space trajectory
fills the accessible phase-space. Next we have shown that the long time evolution of both
lattices is not significantly affected by the thermostat description. Our results also show that
the temperature profile as well as the heat flux of the FPU lattice are indeed affected by the type
of microscopic description employed in the thermostats, a behaviour that is not detected in the
corresponding results for the FK lattice. In any case the corresponding scaling of the thermal
conductivity with the system size, which is the physically relevant result, is only weakly
affected by these differences for large enough lattices. Thus we have explained why, despite
the non-ergodicity exhibited by the most frequently employed Nosé–Hoover thermostats, the
results so far reported in the literature are consistent.

Furthermore, it is important to note that the insights gained in the study of these simplified
models are useful to understand the behaviour of systems described by more sophisticated
potentials. For example, the harmonic part of potential (1) can be considered as a second-order
approximation, in a Taylor expansion, to the Tersoff potential usually employed in theoretical
studies of carbon nanotubes [7]. This feature has indeed been invoked as the reason of the
similitude in the behaviour of the thermal conductivity of these systems and that first observed
in the FPU model [33]. On the other hand, the on-site potential of the FK model can be
considered as a particular approximation to the many-body effects that are incorporated, by
means of an on-site potential, in the embedded-atom method used to describe interactions in
metals [34].

The reported results lead us to conclude that the presence of the on-site potential, which
accounts for the finite thermal conductivity of the FK lattice, is also responsible of the negligible
effect of the chain variables on the thermal behaviour of the FK model, although the precise
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mechanism responsible of this behaviour remains hitherto unclear. Furthermore, considering
the results of the present paper, it cannot be discarded that the FK lattice could exhibit a
different thermal behaviour under the influence of another type of chain thermostat, such as
that proposed in [35].
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